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Abstract 
In this article a thin optical lens model is considered. It is shown that the limits of its applicability are 
determined not only by the ratio between the thickness of the lens and the modules of the radii of curvature, but 
above all its geometric type. We have derived the analytical criteria for the applicability of the model for 
different types of lenses. Quantitative estimations were made for practically important cases оf a glass lens in air 
and air lens in water. 
Кeywords: A thin optical lens model, he limits of the model’s applicability,   
 
Introduction 
One of the major classes of concepts considered in school and university physics courses are 
physical idealization – the objects not existing and unrealizable in the real world, but having 
their pre-images in it. The ideal models, expressed in an appropriate form of sign, become 
abstract mathematical models, which allow ones to explore them on a quantitative level and 
make the interpretation of the obtained results. 

An important characteristic of such models is the simulation interval. It refers to a 
system of conditions within which the identification of the object with the model is achieved. 
For example, the classical Newton’s second law describes the mechanical properties of the 
particle, if its speed is much less than the light’s speed. 

It should be noted that represented in the form of inequalities ,ba <<  the simulation 
interval is quite abstract and “opaque”. To overcome this limitation one should calculate 
relative error ε , which arises when we neglect the quantity of а  in the expression describing 
the phenomenon under consideration. It is sufficient to specify the range of values а  for 
which the error does not exceed the value dictated by the required accuracy for finding the 
investigated characteristic (as a rule, %5max =ε ). This process may be called a quantitative 
estimation of the physical idealization applicability limits. 

 
Calculations for a thin optical lens model 
As an example let us consider one of the most general idealizations in geometrical optics – a 
thin optical lens model. The latter refers to the transparent for this interval of electromagnetic 
waves region of space bounded by two refracting surfaces having a common axle or two 
mutually perpendicular planes of symmetry, and for which takes place the following 
condition: 
 2,1Rt <<  ( 02,1 ≠R ). (1)
  
Here 0>t  – "axis" lens thickness that is the distance between the poles of its surfaces; 2,1R  is 
the radius of the lens curvature measured along its symmetry axis. Further we will specify 
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this criterion and investigate it on quantitative level.  
In the paraxial approximation, with consideration of finite value t, the generalized 

formula of lens has following form: 
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where f , d  respectively are the distances from the second and the first principal planes to 

the image and the luminous point A  (Fig. 1). The focal lengths are also measured from the 
principal planes. 

The right-hand side of expression (2) determines the effective optical power D  of a 
thick lens and is called the Gullstrand’s equation (thick lens formula or Lensmaker's 
equation) [1]. This equation is valid for the case when both sides of the lens are situated in 
the same environment (practically important exceptions from this case are the human eye and 
oil-immersion microscope lens). In this case 0>n  is the refractive index of the lens material 
with respect to the environment in which it is located. 

The coordinates of the poles relative to the lens of principal planes can be calculated 
with the formulas [2]: [ ]tnRRntRx )1()( 1211 −+−= , [ ]tnRRntRx )1()( 1222 −+−= . Then the 
distance between the principal planes is 
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Therefore, the relation (1) will be the thin lens formula under the conditions: 

1)( 0 <<−= DDDDε , 1<<= Dr δ . With regard to (2), (3), these conditions take the form:  

Fig. 1. Image formation of the luminous point A in the thick lens 
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For each value of n  the system (4) allocates on the plane ),( 21 tRtR  region for which 

the thin lens approximation is valid. On Fig. 2 (а, b) the results of numerical calculations of 
the level curves for 6,1=n  (the average value of the refractive index of glass) and 75,0=n  
(air lens in water), along which the values Dε  and r  are equal to 5%, are presented. Regions 
that correspond to large values of these quantities are shown in gray. 

 

Analysis of these diagrams shows that the limits of a thin lens applicability model are 
determined, above all, by its geometric type. Thus, when the curvature radii of the lens have 
different signs (biconvex and biconcave lenses), the latter may be considered as thin if each 
of modules is more than 2-4 times greater than its thickness (asymptotes of curves in these 
cases are the lines nrtnR 2

2,1 )1( −= ). Іf )sgn()sgn( 21 RR =  (positive and negative 
meniscus), one of the radii should satisfy the condition: 

 
 
 
 
 
 
 
 

Fig. 2. The correctness (white) and incorrectness (gray) regions of thin lens approximation 
for %5== rDε . а) 6,1=n ; b) 75,0=n  

а) b) 
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(for the values n , r , described above, tR )42(2,1 −> ), and another – the condition: 
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(for the values n , r , Dε , described above, tR )108(1,2 −> ). At the same time 
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(for the values n , r , Dε , described above, tRR )86(12 −>− ).  

More stringent requirements for the lenses in the form of a meniscus are due to the 
fact that with 21 RR →  their optical power will strong depend on the thickness. Thus, when 
0=t  they will appear as ordinary blanket lenses with 0=D .  

Gullstrand’s equation also allows for finding the relationship between 2,1R  and t , in 
which the image becomes a telescopic one ( 0=D ).From the expression (2) follows that this 
equation has the form of line nntRtR )1(21 −=−  on the plane ),( 21 tRtR . Fig. 3 shows a 
set of such lines, constructed for several values of the refraction index. It’s seen that for 1>n  
( 1<n ) the effective optical power can not vanish for biconcave (biconvex) lenses for 
arbitrary pairs of the curvature radii values. The lenses in the form of the meniscus have no 
such limits. 

Fig. 3. The lines on the plane ),( 21 tRtR , along which the effective optical power is zero. 
1) 9,1=n ; 1) 6,1=n ;1) 75,0=n ;1) 6,0=n  
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It should be noted that the sign of the effective optical power can characterize the 
optical properties of the lens (converging, diverging) only when it is thin. In this case D  is 
simply called the optical power With 0≠t  sign of D  may not always indicate the type of 
focal point of the lens (real or imaginary).  This statement is easily illustrated by the biconvex 
lens with 1>n . When the thickness of the lens is small, its focal point is situated on the right 
of the second pole (Fig. 4a). With )1(1 −== nnRtt x  refracted by the first surface rays 
intersect in the second pole (Fig. 4b). If xtt >  the output beam becomes divergent (Fig. 4c),  

while D  remains positive. Finally, with )1()( 210 −−== nRRntt  the output beam is 
converted into parallel (Fig. 4 d) and the effective optical power becomes equal to zero. 

Conclusions 

The applicability limits of a thin lens model are determined not only by the ratio between the 
thickness of the lens and the curvature radii modules, but above all by its geometric type. In 
the case of biconvex and biconcave lenses the criteria for applicability of the model are 
defined by the condition (5), while for the meniscus – by conditions (5-7). A significant 
thickness of the lens can lead to the appearing of a telescoping effect, as well as to 
discrepancy between the lens effective power sign and the lens optical type. 
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Fig. 4. Position of the back focal point in a thick biconvex lens with different values of 
its axial thickness. а) xtt < ; b) xtt = ; c) 0ttt x << ; d) 0tt =  

а) b) c) 

d) 


